

NoSQL Database Design and Build Assignment

Student Assessment Number: J119811

Module Code: CO7401

Module Title: Databases – SQL and NoSQL

Word count: 1318 (Excluding References, Cover Page, Table of Content & Code)

Date of Submission: 7 May 2025

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

ii

Contents
1 Introduction ... 1

2 Data Modelling ... 1

2.1 Attributes of Each Collection ... 1

3 Methodology .. 3

3.1 Database Setup .. 3

3.2 Data Generation .. 3

3.3 Generate Bulk Data Sets and Insertion ... 4

3.4 Indexing ... 4

3.5 Query and Aggregation.. 5

4 Results and Performance Analysis ... 9

4.1 Q1. Patients Over Age 60... 9

4.2 Q2. Appointments for DoctorID=101 Sorted by Date ... 9

4.3 Q3. Count of ‘Paracetamol’ Prescriptions ... 10

4.4 Q4. Appointments per Department (Aggregation) ... 10

4.5 Q5. Doctors with More Than 10 Patients .. 10

4.6 Q6. Total Billing per Patient ... 11

4.7 Q7. Appointments per Doctor ... 11

4.8 Q8. Prescriptions per Patient .. 12

4.9 Q9. Top 5 Most Common Medications ... 12

5 Scalability and Performance Analysis ... 13

6 Conclusion .. 14

7 Appendix A – References ... 15

8 Appendix B - Code .. 16

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

1

1 Introduction
Healthcare institutions today produce massive heterogeneous data composed of patient

documents alongside medicine prescriptions and medical appointments and financial

records. Relational databases show limited capability when coping with dynamic healthcare

data volumes because their strict schema structure and performance limitations create

obstacles. This project develops MediCareDB as a NoSQL-based healthcare management

system which utilizes MongoDB for database operation.

The document model in MongoDB ensures flexible medical record management since it

adapts to diverse health data without necessitating labor-intensive schema reorganizations.

The platform provides high performance along with real-time analytics and effortless scaling

while meeting the essential requirements of healthcare establishments that require fast

operation speed, permanent operational capabilities and adaptable solutions (Khan et al.,

2022; Van Landuyt et al., 2023). The report includes detailed information regarding

MediCareDB's data modeling along with its batch data generation and query design

implementation along with performance assessment. The system design allows for upcoming

patient volume expansion, medical services growth, and geographic expansion through its

ability to scale and respond as a contemporary healthcare data management solution.

2 Data Modelling

2.1 Attributes of Each Collection

Patients: PatientID, FirstName, LastName, Age, DOB, Gender, BloodType, ContactNumber,

Address, Allergies, MedicalHistory

Doctors: DoctorID, FirstName, LastName, Specialization, ContactNumber, Email,

DepartmentID (Links to departments), HospitalID (Links to hospitals)

Appointments: PatientID, DoctorID, PatientName, DoctorName (denormalized), Date, Status,

Notes

billing_records: PatientID, PatientName, TotalAmount, PaymentStatus

prescriptions: PatientID, Medication, Dosage, Duration

lab_results: PatientID, TestName, Result, ResultDate

room_assignments: PatientID, RoomNumber, AdmissionDate, DischargeDate

pharmacy: DrugName, Manufacturer,ExpiryDate, Stock

departments: DepartmentID, DepartmentName

hospitals: HospitalID, HospitalName, Location, PhoneNumber, Email

Why is a Document-Oriented Database suitable?

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

2

MongoDB's document-based model is well-suited for this healthcare system because it

supports schema flexibility, allowing each document to evolve independently as medical

requirements change. This is essential in healthcare, where patient records and treatment

formats vary widely (Khan et al., 2022; Alflahi et al., 2023). Document stores like MongoDB

also perform better in read-heavy systems, especially when denormalized data is used to

reduce cross-collection joins.

In MediCareDB, relationships between collections are managed using a hybrid approach:

• References (e.g., PatientID, DoctorID) maintain link integrity across collections like

appointments, prescriptions, and billing.

• Embedded Fields (e.g., PatientName, DoctorName) are added directly to documents

where quick access is crucial, improving reading efficiency.

This combination ensures performance and consistency, which is ideal for real-time hospital

applications (Van Landuyt et al., 2023

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

3

3 Methodology

3.1 Database Setup

The system connects to MongoDB Atlas using a secure URI.

3.2 Data Generation

Synthetic data is generated using Python functions designed to simulate realistic hospital data

across collections:

Appointments: These modeling systems link patients with doctors based on timestamps. The

design includes denormalized data by embedding PatientName and DoctorName with their

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

4

respective IDs into individual documents. Embedding data alongside primary keys in

documents eliminates the requirement of real-time joins during read operations and improves

query performance in NoSQL frameworks.

3.3 Generate Bulk Data Sets and Insertion

3.4 Indexing

Indexes are created on high-usage fields such as PatientID and DoctorID using create_index()

to enhance retrieval speed.

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

5

3.5 Query and Aggregation

Various queries and aggregation pipelines were designed to test the system’s efficiency and

analytical capabilities.

Q1. Filter Query: Patients aged over 60

Q2. Sorted Query: Appointments by Date

Q3. Count Query: Paracetamol Prescriptions

Q4. Aggregation: Appointments per Department

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

6

Q5. Aggregation: Doctors with More Than 10 Patients

Q 6 & 7. Aggregation: Total Billing per Patient, Appointment Counts per Doctor

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

7

Q8. Aggregation: Prescription Counts per Patient

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

8

Q9. Aggregation: Top 5 Most Prescribed Medications

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

9

4 Results and Performance Analysis
This section demonstrates how data from essential queries performed on MediCareDB shows

execution time results along with insights about indexing strategies and aggregation

constraints. Performance metrics in milliseconds were collected through the executionStats

parameter of MongoDB's explain() command.

4.1 Q1. Patients Over Age 60

The query retrieved 49 records.The output confirmed that the filter operation was efficiently

executed, taking <1 ms, as it leveraged a simple indexed numeric field (Age). This demonstrates

MongoDB’s high responsiveness for single-condition filters, an expected outcome for

document stores designed for quick document-level access (Kazanavičius et al., 2022).

4.2 Q2. Appointments for DoctorID=101 Sorted by Date

This query sorted appointments by Date for a specific DoctorID. The reported execution time

was 0 ms, indicating that MongoDB's compound indexing on DoctorID and Date enabled near-

instant access and sorting.

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

10

4.3 Q3. Count of ‘Paracetamol’ Prescriptions

Using a count query on {"Medication": "Paracetamol"}, MongoDB returned 2707 results with

an execution time of 3 ms.

4.4 Q4. Appointments per Department (Aggregation)

This aggregation pipeline used $lookup, $unwind, and $group to join appointments with

doctors and count appointments per DepartmentID. Despite its complexity and volume

(hundreds of thousands of records), the operation completed in 1327 ms. This performance

highlights MongoDB’s capacity for join-like operations in aggregation pipelines, albeit at a

higher cost due to memory and disk usage (Floratou et al., 2012). The use of indexes on

DoctorID helped offset the expensive nature of $lookup.

4.5 Q5. Doctors with More Than 10 Patients

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

11

4.6 Q6. Total Billing per Patient

4.7 Q7. Appointments per Doctor

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

12

4.8 Q8. Prescriptions per Patient

This aggregation revealed high variability in prescription volume per patient (ranging from 1 to

41 prescriptions). Despite the data size, the operation remained performant, showing

MongoDB’s ability to handle non-uniform groupings.

4.9 Q9. Top 5 Most Common Medications

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

13

5 Scalability and Performance Analysis
The MediCareDB system leverages MongoDB’s indexing capabilities to enhance query

efficiency. Indexes were created on key fields such as PatientID, DoctorID, and Date to optimize

filtering and aggregation operations. For example, the sorted appointment query for

DoctorID=101 executed in 0 ms, and a count query for ‘Paracetamol’ prescriptions (over 2700

entries) completed in 3 ms, demonstrating the benefits of targeted indexing for performance-

critical queries (Van Landuyt et al., 2023).

Aggregation tasks, such as grouping appointments by department and calculating total billing

per patient, were also performed efficiently due to appropriate schema design and index

utilization. Without indexing, these operations would have required full collection scans,

increasing response time substantially (Oliveira et al., 2016).

The document-based schema is well-suited for future scalability. As new hospital branches are

added or patient record types evolve, the schema can adapt dynamically without restructuring.

Fields like RoomNumber, DrugStock, or new diagnostic types can be integrated seamlessly,

which is a significant advantage over rigid relational schemas (Kazanavičius et al., 2022). This

ensures high availability and throughput even as the database grows in volume and complexity.

Such scalability is essential for healthcare organisations expecting to serve expanding

populations, manage increasing appointments, and track diverse clinical metrics across

multiple facilities.

Thus, the combination of indexing and NoSQL architecture ensures that MediCareDB remains

responsive and scalable under growing demands.

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

14

6 Conclusion
The MediCareDB development with MongoDB shows how practical NoSQL databases help

handle the complex healthcare data and its evolving requirements. The rigid schemas and

relational joins of traditional SQL produce inferior performance and scalability than MongoDB

offers according to Khan et al (2022) and Kazanavičius et al (2022).

Applications with strict ACID requirements and structured data structures find SQL databases

to be ideal solutions, particularly when managing financial transactions. The healthcare domain

benefits from NoSQL solutions through adaptable schema-less designs that maintain superior

efficiency while processing the expanding patient data (Moniruzzaman, 2014). MediCareDB's

denormalized structure omits complex join requirements which lowers both query response

time and query complexity (Floratou et al., 2012).

The implementation of indexing as a performance enhancement strategy allowed queries to

run below 5 ms when processing large datasets. The effective utilization of indexes combined

with MongoDB's aggregation framework enabled efficient execution of aggregations that

computed billing totals and prescription counts (Oliveira et al., 2016). MongoDB enables

horizontal scaling with sharding mechanisms to accommodate growing healthcare information

requirements of expanding hospital services and extended geographic locations (Van Landuyt

et al., 2023).

SQL suits transactional applications but MongoDB's NoSQL design better matches high-volume

healthcare requirements in today's fast-moving healthcare arena. The MediCareDB solution

demonstrates superior scalability and performance that makes it a future-proof system for

medical data management.

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

15

7 Appendix A – References
1. Khan, W., Kumar, T., Zhang, C., Kislay Raj, Roy, A. M., & Luo, B. (2022). SQL and NoSQL

Databases Software architectures performance analysis and assessments -- A

Systematic Literature review. arXiv.Org.

2. Alflahi, A. a. E., Mohammed, M. a. Y., & Alsammani, A. (2023, August 26). Enhancement

of database access performance by improving data consistency in a non-relational

database system (NoSQL). arXiv.org. https://arxiv.org/abs/2308.13921

3. Moniruzzaman, A. B. M. (2014). NewSQL: Towards Next-Generation Scalable RDBMS

for Online Transaction Processing (OLTP) for Big Data Management. arXiv.Org.

4. Floratou, A., Teletia, N., DeWitt, D. J., Patel, J. M., & Zhang, D. (2012). Can the elephants

handle the NoSQL onslaught? Proceedings of the VLDB Endowment, 5(12), 1712–1723.

https://doi.org/10.14778/2367502.2367511

5. Kazanavičius, J., Mažeika, D., & Kalibatienė, D. (2022). An Approach to Migrate a

Monolith Database into Multi-Model Polyglot Persistence Based on Microservice

Architecture: A Case Study for Mainframe Database. Applied Sciences, 12(12), 6189-.

https://doi.org/10.3390/app12126189

6. Van Landuyt, D., Benaouda, J., Reniers, V., Rafique, A., & Joosen, W. (2023). A

Comparative Performance Evaluation of Multi-Model NoSQL Databases and Polyglot

Persistence. Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing,

286–293. https://doi.org/10.1145/3555776.3577645

7. Oliveira, F. R., del Val Cura, L., & Desai, E. (2016). Performance Evaluation of NoSQL

Multi-Model Data Stores in Polyglot Persistence Applications. Proceedings of the 20th

International Database Engineering & Applications Symposium, 230–235.

https://doi.org/10.1145/2938503.2938518

https://arxiv.org/abs/2308.13921
https://doi.org/10.14778/2367502.2367511
https://doi.org/10.3390/app12126189
https://doi.org/10.1145/3555776.3577645
https://doi.org/10.1145/2938503.2938518

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

16

8 Appendix B - Code
from pymongo import MongoClient, ASCENDING

import random

import datetime

MongoDB URI & client setup

uri =

"mongodb+srv://tanvirxf:7T0YMWUdLEjVXWtl@cluster0.uakz7xn.mongodb.net/?retryWrites=true&w=maj

ority&ssl=true&authSource=admin"

client = MongoClient(uri)

db = client["MediCareDB"]

try:

 client.admin.command('ping')

 print("Connected to MongoDB Atlas.")

except Exception as e:

 print("Connection failed:", e)

 exit()

---------------- Generate Data---------------

def generate_patient_info(id):

 return {

 "PatientID": id,

 "FirstName": f"PatientFirst{id}",

 "LastName": f"Last{id}",

 "Age": random.randint(20, 85),

 "DOB": f"{random.randint(1,12):02}/{random.randint(1,28):02}/{random.randint(1960,2000)}",

 "Gender": random.choice(["Male", "Female"]),

 "ContactNumber": f"+1-{random.randint(100,999)}-{random.randint(1000,9999)}",

 "Address": f"{random.randint(100,999)} {random.choice(['Main St','Oak St','Pine St'])}",

 "BloodType": random.choice(["A+", "B+", "O+", "AB+"]),

 "Allergies": random.choice(["None", "Peanuts", "Pollen", "Shellfish"]),

 "MedicalHistory": random.choice(["None", "Diabetes", "Hypertension", "Asthma"])

 }

def generate_doctor(id):

 return {

 "DoctorID": id,

 "FirstName": f"DoctorFirst{id}",

 "LastName": f"DoctorLast{id}",

 "Specialization": random.choice(["Cardiology", "Neurology", "Pediatrics"]),

 "ContactNumber": f"+1-{random.randint(100,999)}-{random.randint(1000,9999)}",

 "Email": f"doctor{id}@hospital.com",

 "DepartmentID": random.randint(1, 10),

 "HospitalID": 1

 }

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

17

def generate_appointment(pid, doc):

 return {

 "PatientID": pid["PatientID"],

 "DoctorID": doc["DoctorID"],

 "PatientName": pid["FirstName"] + " " + pid["LastName"], # Denormalized Patient's Name

 "DoctorName": doc["FirstName"] + " " + doc["LastName"], # Denormalized Doctor's Name

 "Date": datetime.datetime(2024, random.randint(1, 12), random.randint(1, 28), random.randint(9,

17)),

 "Status": random.choice(["Scheduled", "Completed"]),

 "Notes": "Follow-up"

 }

def generate_billing(pid):

 return {

 "PatientID": pid["PatientID"],

 "PatientName": pid["FirstName"] + " " + pid["LastName"], # Denormalized Patient's name again

 "TotalAmount": round(random.uniform(50, 500), 2),

 "PaymentStatus": random.choice(["Paid", "Pending", "Overdue"])

 }

def generate_prescription(pid):

 return {

 "PatientID": pid["PatientID"],

 "Medication": random.choice(["Ibuprofen", "Paracetamol"]),

 "Dosage": "1 tablet",

 "Duration": "5 days"

 }

def generate_lab_result(pid):

 return {

 "PatientID": pid["PatientID"],

 "TestName": random.choice(["Blood Test", "X-Ray"]),

 "Result": random.choice(["Normal", "Abnormal"]),

 "ResultDate": str(datetime.datetime.now().date())

 }

def generate_room(pid):

 return {

 "PatientID": pid["PatientID"],

 "RoomNumber": f"R{random.randint(100,999)}",

 "AdmissionDate": str(datetime.datetime.now().date()),

 "DischargeDate": str(datetime.datetime.now().date())

 }

def generate_pharmacy():

 return {

 "DrugName": random.choice(["Aspirin", "Amoxicillin"]),

 "Manufacturer": random.choice(["PharmaX", "MedCorp"]),

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

18

 "ExpiryDate": str(datetime.datetime(2025, random.randint(1, 12), 1)),

 "Stock": random.randint(10, 500)

 }

def generate_hospital():

 return {

 "HospitalID": 1,

 "HospitalName": "General Hospital",

 "Location": "London",

 "PhoneNumber": "+44-1234-567890",

 "Email": "info@hospital.com"

 }

---------------- Generate Bulk Datasets ----------------

patients = [generate_patient_info(i) for i in range(1, 201)]

doctors = [generate_doctor(i) for i in range(1, 21)]

appointments = [generate_appointment(random.choice(patients), random.choice(doctors)) for _ in

range(300)]

billings = [generate_billing(random.choice(patients)) for _ in range(300)]

prescriptions = [generate_prescription(random.choice(patients)) for _ in range(200)]

labs = [generate_lab_result(random.choice(patients)) for _ in range(200)]

rooms = [generate_room(random.choice(patients)) for _ in range(200)]

pharmacies = [generate_pharmacy() for _ in range(20)]

departments = [{"DepartmentID": i, "DepartmentName": f"Dept{i}"} for i in range(1, 11)]

hospitals = [generate_hospital()]

#----------------------Bulk Insertation to Corresponding MongoDB Collections------------

db["patients"].insert_many(patients)

db["doctors"].insert_many(doctors)

db["appointments"].insert_many(appointments)

db["billing_records"].insert_many(billings)

db["prescriptions"].insert_many(prescriptions)

db["lab_results"].insert_many(labs)

db["room_assignments"].insert_many(rooms)

db["pharmacy"].insert_many(pharmacies)

db["departments"].insert_many(departments)

db["hospitals"].insert_many(hospitals)

---------------- Indexing ----------------

db["patients"].create_index([("PatientID", ASCENDING)])

db["appointments"].create_index([("DoctorID", ASCENDING)])

db["appointments"].create_index([("PatientID", ASCENDING)])

db["billing_records"].create_index([("PatientID", ASCENDING)])

---------------- Queries with Execution time and Aggregation ----------------

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

19

Q1. Find patients who are aged over 60

print("Q1 - Patients over age 60")

explain_cmd = {"find": "patients", "filter": {"Age": {"$gt": 60}}}

stats = db.command("explain", explain_cmd, verbosity="executionStats") # Measures query execution

performance

print(f"executionTimeMillis: {stats['executionStats']['executionTimeMillis']} ms") # Prints execution time

for patient in db.patients.find({"Age": {"$gt": 60}}, {"_id": 0, "PatientID": 1, "FirstName": 1, "Age": 1}):

 print(patient)

print()

Q2. Find appointments by Doctor ID that is sorted by Date

print("Q2 - Appointments for DoctorID=101 sorted by Date")

explain_cmd = {

 "find": "appointments",

 "filter": {"DoctorID": 101},

 "sort": {"Date": -1}

}

stats = db.command("explain", explain_cmd, verbosity="executionStats") # Measures query execution

performance

print(f"executionTimeMillis: {stats['executionStats']['executionTimeMillis']} ms") # Prints execution time

for appt in db.appointments.find({"DoctorID": 101}, {"_id": 0, "DoctorID": 1, "Date": 1}).sort("Date", -1):

 print(appt)

print()

Q3. Count how many prescriptions are for 'Paracetamol'

print("Q3 - Count of 'Paracetamol' prescriptions")

stats = db.command({

 "explain": {

 "count": "prescriptions",

 "query": {"Medication": "Paracetamol"}

 },

 "verbosity": "executionStats"

}) # Measures performance of count query

print(f"executionTimeMillis: {stats['executionStats']['executionTimeMillis']} ms") # Prints execution time

count = db.prescriptions.count_documents({"Medication": "Paracetamol"})

print(f"Total prescriptions for Paracetamol: {count}\n")

Q4. Aggregate: Appointments grouped by department

print("Q4 - Appointments per Department")

pipeline = [

 {"$lookup": { # Join with doctors collection

 "from": "doctors",

 "localField": "DoctorID",

 "foreignField": "DoctorID",

 "as": "doctor_info"

 }},

 {"$unwind": "$doctor_info"}, # Flatten array from $lookup

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

20

 {"$group": { # Group by department ID

 "_id": "$doctor_info.DepartmentID",

 "TotalAppointments": {"$sum": 1}

 }}

]

stats = db.command({

 "explain": {

 "aggregate": "appointments",

 "pipeline": pipeline,

 "cursor": {}

 },

 "verbosity": "executionStats"

}) # Measures aggregation execution performance

execution_time = stats['stages'][0]['$cursor']['executionStats']['executionTimeMillis']

print(f"executionTimeMillis: {execution_time} ms")

for result in db.appointments.aggregate(pipeline):

 print(result)

print()

Q5. Find doctors who have more than 10 patients assigned

print("Q5 - Doctors with >10 patients")

pipeline = [

 {"$group": { # Group by doctor ID and count patients

 "_id": "$DoctorID",

 "TotalPatients": {"$sum": 1}

 }},

 {"$match": {"TotalPatients": {"$gt": 10}}}, # Only include those with more than 10

 {"$sort": {"TotalPatients": -1}} # Sort descending

]

stats = db.command({

 "explain": {

 "aggregate": "patients",

 "pipeline": pipeline,

 "cursor": {}

 },

 "verbosity": "executionStats"

}) # Measures performance of aggregation

execution_time = stats['stages'][0]['$cursor']['executionStats']['executionTimeMillis']

print(f"executionTimeMillis: {execution_time} ms")

for result in db.patients.aggregate(pipeline):

 print(result)

print()

Q6. Total billing amount per patient

print("Q6 - Total billed per patient")

aggregation_query = [

 {"$group": {

 "_id": "$PatientID",

Student Assessment Number: J119811 Module Code: CO7401
 Module Title: Databases SQL and NoSQL

21

 "totalBilled": {"$sum": "$TotalAmount"}

 }}

]

for doc in db.billing_records.aggregate(aggregation_query):

 print(doc)

Q7. Total number of appointments per doctor

print("\nQ7 - Appointments per doctor")

aggregation_query = [

 {"$group": {

 "_id": "$DoctorID",

 "appointmentCount": {"$sum": 1}

 }}

]

for doc in db.appointments.aggregate(aggregation_query):

 print(doc)

Q8. Total number of prescriptions per patient

print("\nQ8 - Prescriptions per patient")

aggregation_query = [

 {"$group": {

 "_id": "$PatientID",

 "prescriptionCount": {"$sum": 1}

 }}

]

for doc in db.prescriptions.aggregate(aggregation_query):

 print(doc)

Q9. Top 5 most frequently prescribed medications

print("\nQ9 - Top 5 most common medications")

aggregation_query = [

 {"$group": {

 "_id": "$Medication",

 "count": {"$sum": 1}

 }},

 {"$sort": {"count": -1}}, # Sort by count descending

 {"$limit": 5} # Limit to top 5

]

for doc in db.prescriptions.aggregate(aggregation_query):

 print(doc)

print("\nAll operations complete.")

